Initial commit
This commit is contained in:
commit
52ebbfb335
7 changed files with 309 additions and 0 deletions
118
Path_Finding_L1.py
Normal file
118
Path_Finding_L1.py
Normal file
|
|
@ -0,0 +1,118 @@
|
|||
def initialize_queue_and_visited(start):
|
||||
"""
|
||||
Initialisiert die Warteschlange (queue) mit dem Startpunkt und das Set der besuchten Knoten (visited).
|
||||
|
||||
Args:
|
||||
start (tuple): Startkoordinate im Format (x, y)
|
||||
|
||||
Returns:
|
||||
tuple: Ein Tupel bestehend aus der Warteschlange (queue) und dem Set der besuchten Knoten (visited).
|
||||
"""
|
||||
# raise NotImplementedError("initialize_queue_and_visited() is not implemented yet.")
|
||||
queue = [(start[0], start[1], [])]
|
||||
visited = {start}
|
||||
return (queue,visited)
|
||||
|
||||
|
||||
def get_neighbors(x, y, maze, visited):
|
||||
"""
|
||||
Berechnet die gültigen Nachbarn (Nachbarzellen) für einen gegebenen Punkt im Labyrinth.
|
||||
|
||||
Args:
|
||||
x (int): Die X-Koordinate des aktuellen Punktes.
|
||||
y (int): Die Y-Koordinate des aktuellen Punktes.
|
||||
maze (list of list of int): Die 2D-Matrix, die das Labyrinth darstellt.
|
||||
visited (set): Das Set der besuchten Knoten.
|
||||
|
||||
Returns:
|
||||
list: Eine Liste der Nachbarknoten, die besucht werden können.
|
||||
"""
|
||||
|
||||
returnval = []
|
||||
|
||||
for i in (-1, 1):
|
||||
if y+i < 0 or y+i > (len(maze[0])-1):
|
||||
continue
|
||||
position = maze[y+i][x]
|
||||
# print(f"\nChecking: ({x},{y+i})")
|
||||
if not position and (y,x+i) not in visited:
|
||||
print(position)
|
||||
returnval.append((x, y+i))
|
||||
print(returnval)
|
||||
else:
|
||||
pass
|
||||
for i in (-1,1):
|
||||
if x+i < 0 or x+i > len(maze[0]):
|
||||
continue
|
||||
position = maze[y][x+i]
|
||||
# print(f"\nChecking: ({x+i},{y})")
|
||||
if not position and (x+i,y) not in visited:
|
||||
print(position)
|
||||
returnval.append((x+i, y))
|
||||
print(returnval)
|
||||
else:
|
||||
pass
|
||||
|
||||
print(returnval)
|
||||
return returnval
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def bfs_maze_solver(maze, start, goal):
|
||||
"""
|
||||
Führt den Breadth-First Search (BFS) durch, um den kürzesten Pfad im Labyrinth zu finden.
|
||||
|
||||
Args:
|
||||
maze (list of list of int): Die 2D-Matrix, die das Labyrinth darstellt.
|
||||
start (tuple): Startkoordinate im Format (x, y)
|
||||
goal (tuple): Zielkoordinate im Format (x, y)
|
||||
|
||||
Returns:
|
||||
list or None: Der kürzeste Pfad als Liste von Koordinaten oder None, wenn kein Pfad gefunden wird.
|
||||
"""
|
||||
|
||||
|
||||
|
||||
# Initialisiere die Warteschlange und die besuchten Knoten
|
||||
queue, visited = initialize_queue_and_visited(start)
|
||||
print(queue)
|
||||
|
||||
while queue:
|
||||
x,y,path = queue.pop(0)
|
||||
|
||||
if (x,y) == goal:
|
||||
return path+[(x,y)]
|
||||
else:
|
||||
n = get_neighbors(x,y,maze,visited)
|
||||
for new_x,new_y in n:
|
||||
visited.add((new_x, new_y))
|
||||
queue.append((new_x,new_y,path+[(x,y)]))
|
||||
|
||||
return None
|
||||
|
||||
|
||||
# Füge hier den Code für BFS hinzu.
|
||||
|
||||
# Beispiel-Labyrinth
|
||||
maze = [
|
||||
[0, 1, 0, 0, 0],
|
||||
[0, 1, 0, 1, 0],
|
||||
[0, 0, 0, 1, 0],
|
||||
[0, 1, 1, 1, 0],
|
||||
[0, 0, 0, 0, 0]
|
||||
]
|
||||
|
||||
start = (0, 0)
|
||||
goal = (4, 4)
|
||||
|
||||
# Finde den kürzesten Pfad mit BFS
|
||||
path = bfs_maze_solver(maze, start, goal)
|
||||
|
||||
# Gib das Ergebnis aus
|
||||
if path:
|
||||
print("Path found:", path)
|
||||
exit()
|
||||
else:
|
||||
print("No path found from start to goal.")
|
||||
146
Path_Finding_L2.py
Normal file
146
Path_Finding_L2.py
Normal file
|
|
@ -0,0 +1,146 @@
|
|||
import sys
|
||||
|
||||
class Node():
|
||||
def __init__(self, state, parent, action):
|
||||
self.state = state
|
||||
self.parent = parent
|
||||
self.action = action
|
||||
|
||||
class StackFrontier():
|
||||
def __init__(self):
|
||||
self.frontier = []
|
||||
|
||||
def add(self, node):
|
||||
self.frontier.append(node)
|
||||
|
||||
def contains_state(self, state):
|
||||
return any(node.state == state for node in self.frontier)
|
||||
|
||||
def empty(self):
|
||||
return len(self.frontier) == 0
|
||||
|
||||
def remove(self):
|
||||
if self.empty():
|
||||
raise Exception("empty frontier")
|
||||
else:
|
||||
node = self.frontier[-1]
|
||||
self.frontier = self.frontier[:-1]
|
||||
return node
|
||||
|
||||
class QueueFrontier(StackFrontier):
|
||||
|
||||
def remove(self):
|
||||
if self.empty():
|
||||
raise Exception("empty frontier")
|
||||
else:
|
||||
node = self.frontier[0]
|
||||
self.frontier = self.frontier[1:]
|
||||
return node
|
||||
|
||||
class Maze():
|
||||
|
||||
def __init__(self, filename):
|
||||
|
||||
# Read file and set height and width of maze
|
||||
with open(filename) as f:
|
||||
contents = f.read()
|
||||
|
||||
# Validate start and goal
|
||||
if contents.count("A") != 1:
|
||||
raise Exception("maze must have exactly one start point")
|
||||
if contents.count("B") != 1:
|
||||
raise Exception("maze must have exactly one goal")
|
||||
|
||||
# Determine height and width of maze
|
||||
contents = contents.splitlines()
|
||||
self.height = len(contents)
|
||||
self.width = max(len(line) for line in contents)
|
||||
|
||||
# Keep track of walls
|
||||
self.walls = []
|
||||
for i in range(self.height):
|
||||
row = []
|
||||
for j in range(self.width):
|
||||
try:
|
||||
if contents[i][j] == "A":
|
||||
self.start = (i, j)
|
||||
row.append(False)
|
||||
elif contents[i][j] == "B":
|
||||
self.goal = (i, j)
|
||||
row.append(False)
|
||||
elif contents[i][j] == " ":
|
||||
row.append(False)
|
||||
else:
|
||||
row.append(True)
|
||||
except IndexError:
|
||||
row.append(False)
|
||||
self.walls.append(row)
|
||||
|
||||
self.solution = None
|
||||
|
||||
|
||||
def print(self):
|
||||
"""
|
||||
Prints the maze to the console, displaying walls, the start and goal positions,
|
||||
and the solution path if it exists.
|
||||
|
||||
The method uses different characters to represent various elements in the maze:
|
||||
- '█' for walls
|
||||
- 'A' for the start position
|
||||
- 'B' for the goal position
|
||||
- '*' for the solution path, if available
|
||||
- ' ' for open spaces
|
||||
|
||||
If a solution has been found, the path from the start to the goal will be shown
|
||||
with asterisks ('*').
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
raise NotImplementedError("neighbors method is not implemented yet")
|
||||
|
||||
|
||||
def neighbors(self, state):
|
||||
"""
|
||||
Returns a list of neighboring states in the maze that can be reached
|
||||
from the current state.
|
||||
|
||||
Args:
|
||||
state (tuple): The current position in the maze as (row, col).
|
||||
|
||||
Returns:
|
||||
list: A list of tuples representing neighboring positions
|
||||
that can be moved to.
|
||||
"""
|
||||
raise NotImplementedError("neighbors method is not implemented yet")
|
||||
|
||||
|
||||
def solve(self):
|
||||
"""
|
||||
Finds a solution to the maze using breadth-first search (BFS) if one exists.
|
||||
|
||||
Returns:
|
||||
None: Modifies the class attributes to store the solution path
|
||||
and number of states explored.
|
||||
"""
|
||||
|
||||
raise NotImplementedError("solve method is not implemented yet")
|
||||
|
||||
|
||||
def output_image(self, filename, show_solution=True, show_explored=False):
|
||||
raise NotImplementedError("output_image method is not implemented yet")
|
||||
|
||||
|
||||
if len(sys.argv) != 2:
|
||||
sys.exit("Usage: python Path_Finding_L2.py maze.txt")
|
||||
|
||||
m = Maze(sys.argv[1])
|
||||
print("Maze:")
|
||||
m.print()
|
||||
print("Solving...")
|
||||
m.solve()
|
||||
print("States Explored:", m.num_explored)
|
||||
print("Solution:")
|
||||
m.print()
|
||||
#m.output_image("maze.png", show_explored=True)
|
||||
|
||||
BIN
Programmieraufgabe_BFS_DFS.odt
Normal file
BIN
Programmieraufgabe_BFS_DFS.odt
Normal file
Binary file not shown.
BIN
__pycache__/Path_Finding_L1.cpython-312.pyc
Normal file
BIN
__pycache__/Path_Finding_L1.cpython-312.pyc
Normal file
Binary file not shown.
6
maze1.txt
Normal file
6
maze1.txt
Normal file
|
|
@ -0,0 +1,6 @@
|
|||
#####B#
|
||||
##### #
|
||||
#### #
|
||||
#### ##
|
||||
##
|
||||
A######
|
||||
16
maze2.txt
Normal file
16
maze2.txt
Normal file
|
|
@ -0,0 +1,16 @@
|
|||
### #########
|
||||
# ################### # #
|
||||
# #### # # # #
|
||||
# ################### # # # #
|
||||
# B # # # #
|
||||
##################### # # # #
|
||||
# ## # # # #
|
||||
# # ## ### ## ######### # # #
|
||||
# # # ## # # # #
|
||||
# # ## ################ # # #
|
||||
### ## #### # # #
|
||||
### ############## ## # # # #
|
||||
### ## # # # #
|
||||
###### ######## ####### # # #
|
||||
###### #### # #
|
||||
A ######################
|
||||
23
test.py
Normal file
23
test.py
Normal file
|
|
@ -0,0 +1,23 @@
|
|||
import Path_Finding_L1 as pf
|
||||
|
||||
start = (0,0)
|
||||
goal = (4,4)
|
||||
|
||||
maze = [
|
||||
[0, 1, 0, 0, 0],
|
||||
[0, 1, 0, 1, 0],
|
||||
[0, 0, 0, 1, 0],
|
||||
[0, 1, 1, 1, 0],
|
||||
[0, 0, 0, 0, 0]
|
||||
]
|
||||
|
||||
queue, visited = pf.initialize_queue_and_visited(start)
|
||||
|
||||
neighbors = pf.get_neighbors(start[0],start[1],maze, {(0,2)})
|
||||
|
||||
pf.bfs_maze_solver(maze, start, goal)
|
||||
|
||||
|
||||
|
||||
# visited = visited | set(neighbors)
|
||||
# print(visited)
|
||||
Loading…
Add table
Add a link
Reference in a new issue